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Optimizing the Design of Space Radiators

R. J. Naumann1
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A procedure for optimizing the configuration of a heat pipe/fin radiating ele-
ment in terms of heat rejected per radiating mass has been developed. The
optimization was carried out analytically by expressing the heat radiated per
radiating mass in terms of a function involving a dimensionless heat trans-
fer coefficient and the dimensionless thermal gradient at the root of the fin
where it joins the heat pipe. The dimensionless Stefan–Boltzmann radiation
equation was solved numerically to determine the value that maximizes the
function that determines the heat transfer per radiating mass. Once this value
is obtained, the optimum width and thickness of the fins as well as the heat
radiated per mass can be specified in terms of the operating temperature,
emissivity, diameter, and mass/length of the heat pipe, and the density and
thermal conductivity of the fin material. The resulting analytical expression
can then be used to determine the maximum heat radiated per radiating mass
over a wide range of operating conditions, to optimize the design of a spe-
cific heat pipe/fin combination, and to conduct analyses of the influence of
design and materials properties on the performance of the system. The opti-
mization procedure was carried out for the case of uniformly tapered fins as
well as for flat fins.
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1. INTRODUCTION

The ability to dissipate large amounts of waste heat is crucial to any
high-powered advanced space propulsion system, and the mass and area
of the radiating system may well be the limiting design factor for future
spacecraft using such a propulsion system. Therefore, it is crucial to opti-
mize the radiator design of such systems to provide the maximum heat
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rejection for the minimum mass. Designers of space heat rejection systems
are tending to move away from the conventional “pumped loop” design to
a segmented element design consisting of many parallel finned heat pipes
[1,2]. The individual element of this system is a heat pipe whose evapo-
rator section is immersed in a manifold or duct containing the fluid to
be cooled while the condenser section is equipped with fins that radiate
to space. This parallel concept is much less vulnerable to puncture by
micrometeoroids and space debris (or to other failure modes) since the
loss of a few elements will not significantly affect the total system.

In the design of such a system, careful attention must be given to the
width and thickness of the fins. As the heat is radiated from the fin, its
local temperature will drop with distance away from the heat pipe making
heat rejection less efficient. Thus, if the fin is made too wide, the result-
ing loss in efficiency will unnecessarily increase the mass of the system.
Similarly, the amount of heat that can be transmitted from the heat pipe
to the fin will be limited by the thickness of the fin. If the fin is made
too thin for its width, the radiating area is not effectively utilized. If the
fin is made too thick for its width, the heat radiated will be limited by
the width of the fin. In either case, the mass required to radiate the heat
will increase unnecessarily. Consideration must also be given to optimiz-
ing the ratio of the fin mass to the heat pipe mass. If the mass per length
of the heat pipe can be reduced, it is more efficient to also reduce the fin
mass per length and either make the heat pipe/fin longer or increase the
number of elements in the system in order to radiate a given amount of
heat.

The problem can thus be stated as follows: given the mass per unit
length of the heat pipe that feeds the fins and its operating temperature,
determine the optimum fin width and thickness as a function of ther-
mal properties that maximizes the heat radiated per overall radiating mass
(heat pipe plus fin). The length of the heat pipe/fin combination will then
be determined by the thermal power the heat pipe is capable of delivering.

The heat radiated per element mass was shown to be directly
proportional to a dimensionless parameter involving the thermal gradient
at the fin root as well as a heat transfer coefficient containing the material
properties and operating temperature. The heat transfer coefficient that
maximizes this dimensionless parameter was obtained by solving a dimen-
sionless form of the Stefan–Boltzmann radiation equation numerically.
Once the optimum value of this heat transfer coefficient was determined
numerically, exact analytical expressions are obtained for the maximum
heat radiated per element mass in terms of geometry, operating tempera-
ture, and physical properties for the optimal fin mass to the heat pipe mass
and for the optimal fin width and thickness.
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The resulting exact analytical expressions can then be used to deter-
mine the maximum heat radiated per radiating mass over a wide range of
operating conditions to optimize the design of a specific heat pipe/fin com-
bination and to conduct analyses of the influence of design and materials
properties on the performance of the system without having to perform
additional numerical computations. Although numerical computations
allow more detail, such as the effect of the temperature dependence of
the thermal conductivity and emissivity to be explored, analytical solutions
provide more insight into the interplay of the various parameters and are
more efficient for optimization and sensitivity analyses.

The optimization procedure was carried out for the case of uniformly
tapered fins as well as for flat fins.

2. ANALYSIS

The following analysis assumes the fin to be L meters long, w meters
wide, and D meters thick with a conductivity K (W · m−1·K−1) as shown
in Fig. 1. The edge x = 0 along the length L is held at constant tem-
perature T0 by a heat pipe or other source while both surfaces of the
fin are allowed to radiate into free space (T = 0). The fin is considered
thin enough so that there are no gradients across its thickness and no
significant radiation from the edges, and radiation from both surfaces is
assumed.

Assuming D << w, the problem can be analyzed using one-dimen-
sional heat flow to obtain the temperature distribution over the width of
the fin. The governing equation is

KD
∂2T

∂x2
=2σεT (x)4, (1)

Fig. 1. Schematic of a heat pipe/fin radiating element.
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where K is the thermal conductivity of the fin material, σ is the Stefan–
Boltzmann constant, and ε is the emissivity of the fin surface. Introducing
dimensionless terms, �=T/T0 and ξ =x/w, this equation becomes

∂2�

∂ξ2
= 2σε w2 T 3

0

KD
�(ξ)4 =β2�(ξ)4 (2)

where the dimensionless heat transfer coefficient, β, is defined as

β2 = 2σεT 3
0 w2

KD
(3)

and the boundary conditions are �(0) = 1 and �′(1) = 0. While both K
and ε may vary with temperature, the variation is generally small over
the limited range over which the fin temperature will be allowed to vary;
hence, the use of average values for these properties is justified.

The total heat per length radiated from a heat pipe/fin element is
twice the heat conducted into an individual fin plus the radiation from the
upper and lower surfaces of the heat pipe itself, or

Q/L=−2KD
∂T

∂x

)
x=0

+2WεσT 4
0 =−2

KDT0

w
�′(0)+2WεσT 4

0 , (4)

where W is the effective radiating width of the heat pipe. Let µ be the lin-
ear density of the radiating portion of the heat pipe. The mass of the radi-
ating system is M =L(µ+ 2ρwD). Thus the amount of heat radiated per
total radiating mass is

Q/M = −2K (D/w)T0�
′(0)+2 Wεσ T 4

0

(µ+2ρwD)
. (5)

The task now is to decide how to apportion the w and D for a given µ

to maximize the total heat radiated per radiating system mass. To per-
form this optimization, we introduce another dimensionless parameter R,
the ratio of fin mass to the mass of the radiating portion of the heat pipe,

R = 2ρwD

µ
(6)

and use the definition of β (Eq. (3)) with the above definition of R to
express the thickness D and width w in terms of β and R;

D =
(

µR

2ρβ

)2/3
(

2σεT 3
0

K

)1/3

, (7)
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and

w =β

(
µR

2ρβ

)1/3
(

K

2σεT 3
0

)1/3

. (8)

Using these expressions in Eq. (5),

Q

M
= 2σεT 4

0

µ



(

2µK

ρσεT 3
0

)1/3
R1/3

(1+R)

∣∣�′(0)
∣∣

β4/3
+ W

(1+R)


 . (9)

We can now optimize the system with respect to β and R. Maximizing the
function |�′(0)|/β4/3 will maximize Q/M independent of R. Taking a par-
tial derivative with respect to R and setting it equal to zero, we obtain a
nonlinear equation,

(2R −1)=− 3β4/3

|�′(0)|

(
ρσεT 3

0

2µK

)1/3

WR2/3 (10)

that must be solved for R. Note that if radiation from the heat pipe is neg-
ligible, W =0 and R=0.5 and if W >0, R<0.5. This implies that the mass
of the fin must always be less than 1/3 the mass of the radiating system,
which places a premium on reducing the mass per length of the heat pipe.

The governing equation, Eq. (2), can be solved by a second order
Runga–Kutta integration if the initial conditions �(0) and �′(0) are
known. However, in our case, only � (0) is known and we must enforce
�′(1) = 0. This condition can be met using a Newton–Raphson iterative
process with the approximate solution (see Appendix A) as a starting
point.

Recall from Eq. (9) that the Q/M can be maximized with respect to
β independently of R by maximizing the function |�′(0)|/β4/3. This func-
tion is computed from the numerical solution of Eq. (2) for selected val-
ues of β, again using the approximate solution as a guide. The results are
shown in Fig. 2. The resulting points were fitted by a third-degree poly-
nomial, and the value β = 0.9190 that maximizes the function was deter-
mined by setting the derivative of the polynomial to zero and solving for
β. The corresponding �′(0)=−0.4778 and |�′(0)|/β4/3 =0.5348 were then
computed. Once these values have been determined for the dimensionless
form of the governing equation, they apply to the optimized case for any
set of dimensional variables.
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Fig. 2. Plot of the function |�′(0)|/β4/3. Value of β that maximizes the
function is found to be 0.9190.

Inserting the optimal values for β and �′(0) into Eq. (10),

(2R −1)=− 3β4/3

|�′(0)|

(
ρσεT 3

0

2µK

)1/3

W R2/3 =−5.609

(
ρσεT 3

0

2µK

)1/3

WR2/3.

(11)

After solving Eq. (11) for the optimal value for R, the optimum width and
thickness for the fin is obtained from Eqs. (7) and (8) and the Q/M may
be found from

Q

M
= 2σεT 4

0

µ(1+R)


( 2µKR

ρσεT 3
0

)1/3

0.5348+W


 . (12)

This procedure will produce the optimum design conditions and the value
for Q/M over the entire range of operating temperatures and other prop-
erties with no approximations involved. It also provides an analytical tool
for assessing how performance depends on the conductivity of the fin
material, the emissivity of the radiating surfaces, and the linear density of
the heat pipe.
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3. EFFECT OF TAPERING THE FINS

A fairly obvious way of increasing the radiated heat without increas-
ing the system mass would be to increase the thickness of the fin at the
root and taper the thickness uniformly to zero at the tip. This configu-
ration would allow more heat to be conducted into the fin in the region
of highest temperature in order to counter the rapid drop in temperature
over the width of the fin. If the fin is tapered from D at the root to 0 at
x =w, the heat flow equation may be written as

KD
d

dx

[
(1−x/w)

dT

dx

]
−2σεT 4 =0 (13)

or in dimensionless parameters,

d
dξ

[
(1− ξ)

d�

dξ

]
= 2σεw2T 3

0

KD
=β2�. (14)

With a tapered fin, the total fin mass per length is ρwD and the ratio of
fin mass to heat pipe mass is now given by R = ρDw/µ. Using this and
the definition for β, the values for D and w are now given by

D =
(

µR

ρβ

)2/3
(

2σεT 3
0

K

)1/3

, (15)

w =β

(
µR

ρβ

)1/3
(

K

2σεT 3
0

)1/3

. (16)

These equations are similar to Eqs. (7) and (8), differing only by the
absence of a factor of two in the denominator in the first term. Includ-
ing the heat radiated from the heat pipe, the Q/M can be written in the
form of Eq. (9),

Q

M
= 2σεT 4

0

µ


( 4µK

ρσεT 3
0

)1/3
R1/3

(1+R)

∣∣�′(0)
∣∣

β4/3
+ W

(1+R)


 . (17)

The only difference between this and Eq. (9) is the factor 41/3 instead
of 21/3 in the numerator. Again Q/M can be maximized with respect to
β independent of R by solving Eq. (14) numerically to obtain �′(0) that
conforms to the boundary conditions �(0) = 1 and �′(1) = 0 for various
values of β. The function |�′(0)|/β4/3 can then be evaluated as a func-
tion of β as before. The maximum absolute value of this function, 0.4848,
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is obtained for β = 0.8825 and �′(0)=−0.4104. The optimal value for R
may be obtained as before by maximizing Eq. (17) with respect to R;

(2R −1)=− 3β4/3

|�′(0)|

(
ρσεT 3

0

4µK

)1/3

WR2/3 =−6.188

(
ρσεT 3

0

4µK

)1/3

W R2/3.

(18)

After finding the optimal value for R from Eq. (18) the maximum Q/M

can be found from

Q

M
= 2σεT 4

0

µ(1+R)



(

4µKR

ρσεT 3
0

)1/3

0.4848+W


 .

= 2σεT 4
0

µ(1+R)



(

2µKR

ρσεT 3
0

)1/3

0.6110+W


 . (19)

Comparing this result with Eq. (12), tapering the fins can produce up
to a 14% gain in heat rejected per radiating mass, depending on the value
of W .

4. PERFORMANCE COMPARISONS

We now utilize this above optimization technique to compare radia-
tor performance of different materials at different temperatures. We com-
pare fins made from Al, Be, and an advanced C–C composite (K1100) and
compare the optimized configuration against the heat pipe/fin configura-
tion described in Ref. 2. In all cases the heat pipe was considered to be
a 91 cm long, 2.5 cm diameter thin-walled Nb–Zr alloy tube surrounded
by 1 mm of the fin material. The effective radiating width W was taken to
be the diameter rather than half the circumference of the heat pipe since
it will exchange some radiation with the fins. The emissivity was taken
to be 0.85. This and other thermophysical properties quoted in Table I
are meant to be representative rather than precise values. The results are
tabulated in Table I.

Several interesting aspects of the optimization procedure and the
effects of materials properties can be seen in these calculations. First
note the dramatic increase in performance obtained by using the higher-
conductivity, lower-density highly ordered pyrolitic graphite fin material
[3] compared with Al or Be. Also note the 20% improvement in Q/M
obtained by optimizing the fin configuration of this system even though
the un-optimized configuration actually radiates 12% more heat. This
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Table I. Performance Comparisons (Values are Derived Except as Noted in Footnotes)

Fin Material Al, Be, K1100, K1100, K1100, K1100,
Configuration optimized optimized Ref. 2 optimized optimized tapered

T0 (K)a 700 700 700 700 1000 1000
ρ (kg·m−3)b,c 2700 1800 1218 1218 1218 1218
ε(−)a 0.85 0.85 0.85 0.85 0.85 0.85
K (W·m−1·K−1)b,c 257 200 1000 1000 1000 1000
L (m)a 0.914 0.914 0.914 0.914 0.914 0.914
W (cm)a 2.50 2.50 2.50 2.50 2.50 2.50
µ (kg·m−1) 0.334 0.263 0.217 0.217 0.217 0.217
β(−) 0.919 0.919 0.431 0.919 0.919 0.882
R(−) 0.300 0.296 0.841 0.370 0.328 0.345
�′(0)(−) −0.478 −0.478 −0.153 −0.478 −0.478 −0.410
w (mm) 49.52 47.96 75.0 94.4 63.5 79.2
D (mm) 0.374 0.45 1.00 0.349 0.461 0.776
M (kg) 0.396 0.311 0.365 0.272 0.254 0.267
�(1)(−) 0.798 0.798 0.928 0.798 0.798 0.715
η(−) 0.56 0.56 0.821 0.56 0.56 0.53
Q (W) 1715 1677 3134 2791 8538 9559
Q/M (W·kg−1) 4328 5388 8576 10260 32390 35750
M /A (kg·m−2) 3.494 2.817 2.285 1.393 1.897 1.835

a Assumed values.
b Tables in Ref. 5.
c Properties of highly ordered pyrolitic graphite from Ref. 3.

improvement in Q/M comes about from reducing the fin mass by 34% by
making the fin much thinner and somewhat longer.

The T0 = 1000 K cases were run to illustrate how the performance
improves at higher temperatures as well as the effect of tapering the fins.
First note that there is only approximately a threefold increase in Q/M
when the operating temperature is increased from 700 to 1000 K instead of
the fourfold increase expected from the T 4 law. This comes about because
of the T 2 dependence of the optimized D/w ratio in Eq. (5), which gives
the fin portion of the radiation a T 3 dependence. It can also be seen that
tapering the fin results in a 10% increase in the Q/M for this configura-
tion.

The quantity η in the table is the fin efficiency. It is defined as the
heat actually radiated from the fin divided by the heat that would be radi-
ated if the entire fin were held at T0. It is determined by dividing the
fin contribution to Eq. (4), −2K(D/w)T0�

′(0) by 2σεwT 4
0 . The Ref. 2

configuration has a much higher fin efficiency than the optimum config-
uration because the shorter, fatter fins maintain a much higher average
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Fig. 3. Dimensionless temperature (T/T0) as a function of fractional distance
along the fin width for different fin configurations.

temperate as can be seen in Fig. 3, but at the expense of added mass.
However, as shown in the Appendix A, the highest fin efficiency is attained
by shrinking β to 0, which does not produce any radiated heat. Therefore,
fin efficiency is not a particularly useful indicator of performance.

The Ref. 2 configuration maintains a higher average temperature
because of its shorter fatter fins. The tapered fin suffers the greatest tem-
perature drop but radiates more heat because of its greater length. The
thermal gradient �′(0) for the tapered fin is slightly less than that for the
flat fin, but more heat is being transferred from the heat pipe to the fin
because the tapered fin is almost twice as thick at the root.

The cases considered all assumed a length of 0.91 m for the radiating
system. The Q/M should be independent of this length so long as the heat
pipe can deliver the heat required to maintain the root temperature at the
specified T0.
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5. SUMMARY

A procedure for optimizing the configuration of a heat pipe/fin radi-
ating element in terms of heat rejected per unit mass has been developed
using a combination analytical/numerical procedure that provides analyti-
cal expressions for the maximum heat radiated per radiating mass as well
as for the optimum fin width and thickness. The expressions developed for
both flat and tapered fins are valid over any set of operation conditions
and involve no approximations. It was shown that the Q/M is inversely
proportional to the linear density of the heat pipe, which places a pre-
mium on the development of lightweight heat pipes. The heat radiated
from the fin is shown to be proportional to the cube of the heat pipe
temperature, to the 2/3 power of the emissivity, and to the 1/3 power of
the ratio of thermal conductivity to density of the fin material. Tapering
the fins can provide up to 14% greater radiation per mass, depending on
the effective width of the radiating heat pipe. Increasing the effective radi-
ating width W of the heat pipe itself by fabricating it with an elliptical
cross section can also increase the Q/M.

The optimization procedure is relatively insensitive to the dimension-
less heat transfer coefficient β, and thus the thermophysical properties than
it involves as may be seen from Fig. 2. A variation of ±5% in β reduces
the optimum Q/M by only 0.56%, which is further justification for using
average values for K and σ , especially when the temperature across the fin
varies only by ∼25% of its maximum value as may be seen in Fig. 3.

The analysis only included the radiating mass of the heat pipe/fin
combination and did not include the evaporator portion of the heat pipe
or the mass of the duct system that carries heat to the heat pipe. Also, the
analysis assumed the mass of the radiating system and the heat radiated
increase linearly with the length of the element. Clearly the ability of the
heat pipe to carry the required heat without a drop in temperature, along
with the mass of the duct and evaporator, must be considered in determin-
ing the optimum length of the radiating elements and number of elements
needed to radiate the required amount of heat.

APPENDIX A. APPROXIMATE SOLUTIONS TO THE STEFAN–
BOLTZMANN RADIATION EQUATION

The governing equation for the flat fin case, Eq. (2) can be expanded
about �=1 to give

∂2�

∂ξ2
=β2 [1−4 (1−�(ξ))]≈β2 [4�(ξ)−3] . (A.1)
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The solution [4] is

�= 3
4

+ cosh [2β(1− ξ)]
4 cosh [2β]

(A.2)

and

�′(0)=−β
tanh(2β)

2
(A.3)

The heat per length flowing into the fin at x =0 is given by

Qcond/L=−KD
∂T

∂x

)
0
≈ KDT0

2w
β tanh [2β]=2σεwT 4

0
tanh [2β]

2β
(A.4)

Dividing by the heat radiated from both sides of a fin whose width is
w, the fin efficiency is η = tanh[2β]

2β
which is maximized in the limit β → 0.

Inserting Eq. (A.3) into Eq. (9),

Q

M
≈ 2σεT 4

0

µ(1+R)


( µK

2ρσεT 3
0

)1/3
R1/3 tanh(2β)

(2β)1/3
+W


 . (A.5)

The quantity tanh [2β]/(2β)1/3 must be maximized with respect to β which
requires β =0.709. This value, along with Eq. (A.3), provided the starting
conditions for the iterative numerical solutions.

The solution to the approximate heat flow equation for the tapered
fin case is [3]

�≈ 3
4

+
I0

[
4β (1− ξ)1/2

]
4I0 [4β]

(A.6)

where I0 is the modified Bessel function of the First Kind of order zero.
The derivative is

∂�

∂ξ

)
0
≈−I1 [4β]

I0 [4β]
β

2
. (A.7)

Inserting this derivative into Eq. (17), the quantity to be maximized is
I1 [4β] /β1/3I0 [4β], which occurs for β =0.654. As before, this value, along
with Eq. (A.7), provides the starting points for the iterative numerical
solution for the tapered fin.
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